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The main aim of this work is to present a user friendly numerical algorithm based on homotopy perturbation Sumudu transform
method for nonlinear fractional partial differential arising in spatial diffusion of biological populations in animals.Themovements
are made generally either by mature animals driven out by invaders or by young animals just reaching maturity moving out of
their parental territory to establish breeding territory of their own. The homotopy perturbation Sumudu transform method is a
combined form of the Sumudu transform method and homotopy perturbation method. The obtained results are compared with
Sumudu decomposition method. The numerical solutions obtained by the proposed method indicate that the approach is easy to
implement and accurate. These results reveal that the proposed method is computationally very attractive.

1. Introduction

Nonlinear phenomena have important effects on applied
mathematics, biology, and physics and are related to engi-
neering; many such physical phenomena are modeled in
terms of nonlinear partial differential equations. For example,
the degenerate parabolic nonlinear partial differential equa-
tions arising in the spatial diffusion of biological populations
are given as

𝑈
𝑡
= 𝐺(𝑈)

𝑥𝑥
+ 𝐺(𝑈)

𝑦𝑦
+ 𝑓 (𝑡, 𝑥, 𝑦, 𝑈) , 𝑡 ≥ 0, 𝑥, 𝑦 ∈ 𝑅,

(1)

with initial condition 𝑈(𝑥, 𝑦, 0) = 𝑈
0
(𝑥, 𝑦), where 𝑈 denotes

the population density and 𝑓 represents the population
supply due to birth and death. It is worth mentioning that
(1) with 𝑓(𝑡, 𝑥, 𝑦, 𝑈) = −𝑘𝑈

𝑞
(𝑥, 𝑦, 𝑡), where 𝑘 ≥ 0, 0 <

𝑞 < 1, arises in the study of flow through porous media
[1, 2]. Moreover, the problem (1) leads to Malthusian law
[3] for 𝑓(𝑡, 𝑥, 𝑦, 𝑈) = 𝑐

1
𝑈(𝑥, 𝑦, 𝑡) and Verhulst law [3] for

𝑓(𝑡, 𝑥, 𝑦, 𝑈) = 𝑐
2
𝑈(𝑥, 𝑦, 𝑡) − 𝑐

3
𝑈
2
(𝑥, 𝑦, 𝑡), where 𝑐

1
, 𝑐
2
, 𝑐
3
are

positive constants. We consider the model as an example
in the population of animals. The movements are made
generally either by mature animals driven out by invaders or
by young animals just reaching maturity moving out of their
parental territory to establish breeding territory of their own.
In both cases, it is much more plausible to suppose that they
will be directed towards nearby vacant territory. Therefore,
movement will take place almost exclusively “down” the
population density gradient and will be much more rapid at
high population densities than at low ones. In an attempt
to model this situation, they considered a walk through a
rectangular grid, in which at each step an animal may either
stay at its present location or may move in the direction
of lowest population density. We consider the more general
form of time fractional biological equation by taking 𝑓(𝑈) =
ℎ𝑈
𝑔
(1 − 𝑟𝑈

ℎ
) as

𝐷
𝛼

𝑡
𝑈 = 𝐷

2

𝑥
𝑈
2
+ 𝐷
2

𝑦
𝑈
2
+ ℎ𝑈
𝑔
(1 − 𝑟𝑈

ℎ
) ,

0 < 𝛼 ≤ 1, 𝑡 ≥ 0, 𝑥, 𝑦 ∈ 𝑅,

(2)
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with initial condition 𝑈(𝑥, 𝑦, 0) = 𝑈
0
(𝑥, 𝑦), where 𝑈 denotes

the populations density and 𝑓 represents the population sup-
ply due to births and deaths. The most important advantage
of using fractional differential equations in mathematical
modelling is their nonlocal property. It is well known that the
integer order differential operator is a local operator, but the
fractional order differential operator is nonlocal. This means
that the next state of a system depends not only upon its
current state but also upon all of its historical states. This is
more realistic and it is one reason why fractional calculus
has becomemore and more popular [4–10].There are several
methods to solve the fractional biological equations, such as
Adomian’s decomposition method (ADM) [11] and homo-
topy analysis method (HAM) [12]. The optimal homotopy
analysis method (OHAM) has been applied for solving non-
linear problems [13–15].The homotopy perturbation method
(HPM) has first proposed by He [16–18] for solving various
linear and nonlinear initial and boundary value problems.
TheHPMwas also investigated bymany researchers to handle
nonlinear equations arising in science and engineering [19–
22]. The Laplace transform and Sumudu transform are
totally incapable of handling nonlinear equations because
of the difficulties that are caused by the nonlinear terms.
Various ways have been proposed recently to deal with such
nonlinearities such as the Laplace decomposition algorithm
[23, 24], the homotopy perturbation transform method
(HPTM) [25], Sumudu decomposition method (SDM) [26],
and the homotopy perturbation Sumudu transform method
(HPSTM) [27] to produce highly effective techniques for
solving many nonlinear problems.

In this paper, we implement the homotopy perturbation
Sumudu transform method (HPSTM) to find the analytical
and numerical solutions of the fractional biological popu-
lation models. The HPSTM is an elegant combination of
the Sumudu transform method, the HPM and Adomian’s
polynomials.Moreover, we apply the Sumudu decomposition
method (SDM) to the same problems to compare the results.
The SDM is a combined form of Sumudu transform method
and Adomian’s decomposition method (ADM) which was
first introduced by Adomian [28, 29]. Adomian’s polynomials
are studied by Jafari et al. [30, 31] for handling nonlinear
equations and showed that the Adomian’s polynomials and
He’s polynomials are same.Thenumerical results are depicted
through the graphical illustrations. The proposed techniques
provide the solution in a rapid convergent series which may
lead to the solution in a closed form. The advantage of
these methods is their capability of combining two powerful
methods for obtaining exact and approximate solutions for
nonlinear equations.

2. Basic Definitions of Fractional Calculus

In this section, we mention the following basic definitions of
fractional calculus and Sumudu transform.

Definition 1. TheRiemann-Liouville fractional integral oper-
ator of order𝛼 > 0, of a function𝑓(𝑡) ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is defined

as [4]

𝐽
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1
𝑓 (𝜏) 𝑑𝜏, (𝛼 > 0) ,

𝐽
0
𝑓 (𝑡) = 𝑓 (𝑡) .

(3)

For the Riemann-Liouville fractional integral we have

𝐽
𝛼
𝑡
𝛾
=

Γ (𝛾 + 1)

Γ (𝛾 + 𝛼 + 1)
𝑡
𝛼+𝛾
. (4)

Definition 2. The fractional derivative of 𝑓(𝑡) in the Caputo
sense is defined as [5]

𝐷
𝛼

𝑡
𝑓 (𝑡) = 𝐽

𝑚−𝛼
𝐷
𝑛
𝑓 (𝑡)

=
1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−𝛼−1

𝑓
(𝑚)
(𝜏) 𝑑𝜏,

(5)

for𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑁, and 𝑡 > 0.

Definition 3. The Sumudu transform [32] is defined over the
set of functions:

𝐴 = {𝑓 (𝑡) | ∃𝑀, 𝜏
1
, 𝜏
2
> 0,

𝑓 (𝑡)
 < 𝑀𝑒

|𝑡|/𝜏𝑗 ,

if 𝑡 ∈ (−1)𝑗 × [0,∞)} ,
(6)

by the following formula:

𝑓 (𝑢) = 𝑆 [𝑓 (𝑡)] = ∫

∞

0

𝑓 (𝑢𝑡) 𝑒
−𝑡
𝑑𝑡, 𝑢 ∈ (−𝜏

1
, 𝜏
2
) . (7)

Some of the important properties of the Sumudu transform
were established by Asiru [33]. Further, fundamental prop-
erties of this transform were established by Belgacem et al.
[34] and Belgacem and Karaballi [35]. In fact it was shown
that there is strong relationship between Sumudu and other
integral transform; see Kılıçman et al. [36]. In particular
the relationship between Sumudu transform and Laplace
transforms was presented in Kılıcman and Gadain [37]. The
Sumudu transform has scale and unit preserving properties,
so it can be used to solve problems without resorting to a new
frequency domain.

Definition 4. TheSumudu transform of the Caputo fractional
derivative is defined as follows [38]:

𝑆 [𝐷
𝛼

𝑡
𝑓 (𝑡)] = 𝑢

−𝛼
𝑆 [𝑓 (𝑡)] −

𝑚

∑

𝑘 = 0

𝑢
−𝛼+𝑘

𝑓
(𝑘)
(0+) ,

(𝑚 − 1 < 𝛼 ≤ 𝑚) .

(8)

3. Homotopy Perturbation Sumudu
Transform Method (HPSTM)

To illustrate the basic idea of this method, we consider a
general fractional nonlinear nonhomogeneous partial differ-
ential equation with the initial condition of the form:

𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) + 𝑅𝑈 (𝑥, 𝑡) + 𝑁𝑈 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) , (9)

𝑈 (𝑥, 0) = 𝑓 (𝑥) , (10)
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where 𝐷𝛼
𝑡
𝑈(𝑥, 𝑡) is the Caputo fractional derivative of the

function 𝑈(𝑥, 𝑡), 𝑅 is the linear differential operator, 𝑁
represents the general nonlinear differential operator, and
𝑔(𝑥, 𝑡), is the source term.

Applying the Sumudu transform (denoted in this paper
by 𝑆) on both sides of (9), we get

𝑆 [𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡)] + 𝑆 [𝑅𝑈 (𝑥, 𝑡)] + 𝑆 [𝑁𝑈 (𝑥, 𝑡)] = 𝑆 [𝑔 (𝑥, 𝑡)] .

(11)

Using the differentiation property of the Sumudu transform,
we have

𝑆 [𝑈 (𝑥, 𝑡)] = 𝑓 (𝑥) + 𝑢
𝛼
𝑆 [𝑔 (𝑥, 𝑡)]

− 𝑢
𝛼
𝑆 [𝑅𝑈 (𝑥, 𝑡) + 𝑁𝑈 (𝑥, 𝑡)] .

(12)

Operatingwith the Sumudu inverse on both sides of (12) gives

𝑈 (𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) − 𝑆
−1
[𝑢
𝛼
𝑆 [𝑅𝑈 (𝑥, 𝑡) + 𝑁𝑈 (𝑥, 𝑡)]] ,

(13)

where 𝐺(𝑥, 𝑡) represents the term arising from the source
term and the prescribed initial conditions. Now we apply the
HPM

𝑈 (𝑥, 𝑡) =

∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡) , (14)

and the nonlinear term can be decomposed as

𝑁𝑈(𝑥, 𝑡) =

∞

∑

𝑛 = 0

𝑝
𝑛
𝐴
𝑛
, (15)

for some Adomian’s polynomials 𝐴
𝑛
that are given by

𝐴
𝑛
=
1

𝑛!

𝑑
𝑛

𝑑𝑝𝑛
[𝑁(

∞

∑

𝑖 = 0

𝑝
𝑖
𝑈
𝑖
)]

𝑝=0

, 𝑛 = 0, 1, 2, . . . . (16)

Substituting (14) and (15) in (13), we get
∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) − 𝑝(𝑆

−1
[𝑢
𝛼
𝑆 [𝑅

∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡)

+

∞

∑

𝑛 = 0

𝑝
𝑛
𝐴
𝑛
]]) ,

(17)

which is the coupling of the Sumudu transform method, the
HPM, and Adomian’s polynomials. Comparing the coeffi-
cients of like powers of 𝑝, the following approximations are
obtained:

𝑝
0
: 𝑈
0
(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) ,

𝑝
1
: 𝑈
1
(𝑥, 𝑡) = − 𝑆

−1
[𝑢
𝛼
𝑆 [𝑅𝑈

0
(𝑥, 𝑡) + 𝐴

0
]] ,

𝑝
2
: 𝑈
2
(𝑥, 𝑡) = − 𝑆

−1
[𝑢
𝛼
𝑆 [𝑅𝑈

1
(𝑥, 𝑡) + 𝐴

1
]] ,

𝑝
3
: 𝑈
3
(𝑥, 𝑡) = − 𝑆

−1
[𝑢
𝛼
𝑆 [𝑅𝑈

2
(𝑥, 𝑡) + 𝐴

2
]] ,

...

(18)

Proceeding in the same manner, the rest of the components
𝑈
𝑛
(𝑥, 𝑡) can be completely found and the series solution

is thus entirely determined. Finally, we approximate the
analytical solution 𝑈(𝑥, 𝑡) by truncated series as

𝑈 (𝑥, 𝑡) = lim
𝑁→∞

𝑁

∑

𝑛 = 0

𝑈
𝑛
(𝑥, 𝑡) . (19)

4. Sumudu Decomposition Method (SDM)

We consider a general fractional nonlinear nonhomogeneous
partial differential equation with the initial condition of the
form:

𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) + 𝑅𝑈 (𝑥, 𝑡) + 𝑁𝑈 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) , (20)

𝑈 (𝑥, 0) = 𝑓 (𝑥) , (21)

where 𝐷𝛼
𝑡
𝑈(𝑥, 𝑡) is the Caputo fractional derivative of the

function 𝑈(𝑥, 𝑡), 𝑅 is the linear differential operator, 𝑁
represents the general nonlinear differential operator, and
𝑔(𝑥, 𝑡) is the source term.

Taking the Sumudu transform on both sides of (20), we
get

𝑆 [𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡)] + 𝑆 [𝑅𝑈 (𝑥, 𝑡)] + 𝑆 [𝑁𝑈 (𝑥, 𝑡)] = 𝑆 [𝑔 (𝑥, 𝑡)] .

(22)

Using the differentiation property of the Sumudu transform
and the above initial conditions, we have

𝑆 [𝑈 (𝑥, 𝑡)] = 𝑓 (𝑥) + 𝑢
𝛼
𝑆 [𝑔 (𝑥, 𝑡)]

− 𝑢
𝛼
𝑆 [𝑅𝑈 (𝑥, 𝑡) + 𝑁𝑈 (𝑥, 𝑡)] .

(23)

Now, applying the inverse Sumudu transform on both sides
of (23), we get

𝑈 (𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) − 𝑆
−1
[𝑢
𝛼
𝑆 [𝑅𝑈 (𝑥, 𝑡) + 𝑁𝑈 (𝑥, 𝑡)]] ,

(24)

where 𝐺(𝑥, 𝑡) represents the term arising from the source
term and the prescribed initial conditions.

The second step in SDM is that we represent solution as
an infinite series given below:

𝑈 (𝑥, 𝑡) =

∞

∑

𝑛 = 0

𝑈
𝑛
(𝑥, 𝑡) (25)

and the nonlinear term can be decomposed as

𝑁𝑈(𝑥, 𝑡) =

∞

∑

𝑛 = 0

𝐴
𝑛
, (26)

where𝐴
𝑛
are Adomian polynomials of𝑈

0
, 𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑛
and

it can be calculated by formula given below:

𝐴
𝑛
=
1

𝑛!

𝑑
𝑛

𝑑𝜆𝑛
[𝑁(

∞

∑

𝑖 = 0

𝜆
𝑖
𝑈
𝑖
)]

𝜆= 0

, 𝑛 = 0, 1, 2, . . . . (27)
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Using (25) and (26) in (24), we get
∞

∑

𝑛 = 0

𝑈
𝑛
(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡)

− 𝑆
−1
[𝑢
𝛼
𝑆 [𝑅

∞

∑

𝑛 = 0

𝑈
𝑛
(𝑥, 𝑡) +

∞

∑

𝑛 = 0

𝐴
𝑛
]] .

(28)

On comparing both sides of (28), we get

𝑈
0
(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) ,

𝑈
1
(𝑥, 𝑡) = − 𝑆

−1
[𝑢
𝛼
𝑆 [𝑅𝑈

0
(𝑥, 𝑡) + 𝐴

0
]] ,

𝑈
2
(𝑥, 𝑡) = − 𝑆

−1
[𝑢
𝛼
𝑆 [𝑅𝑈

1
(𝑥, 𝑡) + 𝐴

1
]] .

(29)

In general the recursive relation is given by

𝑈
𝑛+1
(𝑥, 𝑡) = −𝑆

−1
[𝑢
𝛼
𝑆 [𝑅𝑈

𝑛
(𝑥, 𝑡) + 𝐴

𝑛
]] , 𝑛 ≥ 0. (30)

Now first of all applying the Sumudu transform of the right
hand side of (30) then applying the inverse Sumudu trans-
form, we get the values of 𝑈

0
, 𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑛
, respectively.

5. Numerical Examples

In this section, we demonstrate the performance and effi-
ciency of HPSTMby giving three examples of time-fractional
biological models and compare the results with the results
obtained with help of SDM.

Example 1. We consider the following time-fractional biolog-
ical population model:

𝐷
𝛼

𝑡
𝑈(𝑥, 𝑦, 𝑡) = 𝐷

2

𝑥
𝑈
2
+ 𝐷
2

𝑦
𝑈
2
+ ℎ𝑈, 0 < 𝛼 ≤ 1, (31)

subject to the initial condition

𝑈 (𝑥, 𝑦, 0) = √𝑥𝑦. (32)

Operating with the Sumudu transform on both sides of (31),
we have

𝑆 [𝑈 (𝑥, 𝑦, 𝑡)] = √𝑥𝑦 + 𝑢
𝛼
𝑆 [𝐷
2

𝑥
𝑈
2
+ 𝐷
2

𝑦
𝑈
2
+ ℎ𝑈] . (33)

The inverse of the Sumudu transform gives that

𝑈 (𝑥, 𝑦, 𝑡) = √𝑥𝑦 + 𝑆
−1
[𝑢
𝛼
𝑆 [𝐷
2

𝑥
𝑈
2
+ 𝐷
2

𝑦
𝑈
2
+ ℎ𝑈]] .

(34)

According to the HPM, we construct the following homo-
topy:
∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑦, 𝑡) = √𝑥𝑦 + 𝑝𝑆

−1

× (𝑢
𝛼
𝑆 [

∞

∑

𝑛 = 0

𝑝
𝑛
𝐴
𝑛

+ℎ

∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑦, 𝑡)]) ,

(35)

where 𝐴
𝑛
are Adomian’s polynomials that represent the

nonlinear terms. The first few components of Adomian’s
polynomials are given by

𝐴
0
= 𝐷
2

𝑥
𝑈
2

0
+ 𝐷
2

𝑦
𝑈
2

0
,

𝐴
1
= 2𝐷
2

𝑥
(𝑈
0
𝑈
1
) + 2𝐷

2

𝑦
(𝑈
0
𝑈
1
) , . . . .

(36)

Comparing the coefficient of like power of 𝑝, we have

𝑝
0
: 𝑈
0
(𝑥, 𝑦, 𝑡) = √𝑥𝑦,

𝑝
1
: 𝑈
1
(𝑥, 𝑦, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐴
0
+ ℎ𝑈
0
]] = √𝑥𝑦

ℎ𝑡
𝛼

Γ (𝛼 + 1)
,

𝑝
2
: 𝑈
2
(𝑥, 𝑦, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐴
1
+ ℎ𝑈
1
]] = √𝑥𝑦

(ℎ𝑡
𝛼
)
2

Γ (2𝛼 + 1)
,

𝑝
3
: 𝑈
3
(𝑥, 𝑦, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐴
2
+ ℎ𝑈
2
]] = √𝑥𝑦

(ℎ𝑡
𝛼
)
3

Γ (3𝛼 + 1)
,

(37)

and so on.
Making use of (37), the series solution 𝑈(𝑥, 𝑦, 𝑡) is given

as

𝑈(𝑥, 𝑦, 𝑡) = lim
𝑝→1

∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑦, 𝑡)

= √𝑥𝑦[1 +
ℎ𝑡
𝛼

Γ (𝛼 + 1)
+

ℎ
2
𝑡
2𝛼

Γ (2𝛼 + 1)

+
ℎ
3
𝑡
3𝛼

Γ (3𝛼 + 1)
+ ⋅ ⋅ ⋅ ] .

(38)

Setting 𝛼 = 1 in (38), we reproduce the solution of the
problem as follows:

𝑈 (𝑥, 𝑦, 𝑡) = √𝑥𝑦[1 +
ℎ𝑡

1!
+
(ℎ𝑡)
2

2!
+
(ℎ𝑡)
3

3!
+ ⋅ ⋅ ⋅ ] , (39)

which converge very rapidly to the exact solution𝑈(𝑥, 𝑦, 𝑡) =
√𝑥𝑦𝑒
ℎ𝑡.

According to SDM and to (25) and (34), the iteration
formula for (31) is given by
∞

∑

𝑛 = 0

𝑈
𝑛
(𝑥, 𝑦, 𝑡) = √𝑥𝑦 + 𝑆

−1

× (𝑢
𝛼
𝑆 [

∞

∑

𝑛 = 0

𝐴
𝑛
+ ℎ

∞

∑

𝑛 = 0

𝑈
𝑛
(𝑥, 𝑦, 𝑡)]) ,

(40)

where 𝐴
𝑛
are Adomian’s polynomials that represent the

nonlinear terms. The first few components of Adomian’s
polynomials are given by

𝐴
0
= 𝐷
2

𝑥
𝑈
2

0
+ 𝐷
2

𝑦
𝑈
2

0
,

𝐴
1
= 2𝐷
2

𝑥
(𝑈
0
𝑈
1
) + 2𝐷

2

𝑦
(𝑈
0
𝑈
1
) , . . . .

(41)
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The recursive relation is given below:

𝑈
0
(𝑥, 𝑦, 𝑡) = √𝑥𝑦,

𝑈
1
(𝑥, 𝑦, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐴
0
+ ℎ𝑈
0
]] ,

𝑈
𝑛+1
(𝑥, 𝑦, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐴
𝑛
+ ℎ𝑈
𝑛
]] .

(42)

The other components of the solution can be easily found by
using above recursive relation:

𝑈
1
(𝑥, 𝑦, 𝑡) = √𝑥𝑦

ℎ𝑡
𝛼

Γ (𝛼 + 1)
,

𝑈
2
(𝑥, 𝑦, 𝑡) = √𝑥𝑦

(ℎ𝑡
𝛼
)
2

Γ (2𝛼 + 1)
,

𝑈
3
(𝑥, 𝑦, 𝑡) = √𝑥𝑦

(ℎ𝑡
𝛼
)
3

Γ (3𝛼 + 1)
,

(43)

and so on.
Therefore, the decomposition series solutions is given by

𝑈(𝑥, 𝑦, 𝑡) = √𝑥𝑦[1 +
ℎ𝑡
𝛼

Γ (𝛼 + 1)
+

ℎ
2
𝑡
2𝛼

Γ (2𝛼 + 1)

+
ℎ
3
𝑡
3𝛼

Γ (3𝛼 + 1)
+ ⋅ ⋅ ⋅ ] ,

(44)

which is the same solution as obtained by using HPSTM and
setting 𝛼 = 1, it converge to the exact solution 𝑈(𝑥, 𝑦, 𝑡) =
√𝑥𝑦𝑒
ℎ𝑡.

The numerical results for the time-fractional biological
population model (31) obtained by using the HPSTM, SDM,
and the exact solution for various values of 𝑡, 𝑥, and 𝛼 with
𝑦 = 1 and ℎ = 1 are shown by Figures 1(a)–1(d) and those
for various values of 𝑡 at 𝑥 = 1, 𝑦 = 1, ℎ = 1, and 𝛼 = 1
are depicted in Figure 2 and those for different values of 𝑡
and 𝛼 at 𝑥 = 1, 𝑦 = 1, and ℎ = 1 are shown in Figure 3.
It is observed from Figure 1 that 𝑈(𝑥, 𝑦, 𝑡) increases with the
increase in both 𝑥 and 𝑡 for 𝛼 = 0.5, 0.75, and 1 with 𝑦 = 1
and ℎ = 1. It is seen from Figure 3 that as the value of 𝛼
decreases, the numerical value of 𝑈(𝑥, 𝑦, 𝑡) increases. It can
also be seen from Figure 1 that the solution obtained by using
the presentmethod is nearly identical with the exact solution.
From Figure 2, we can easily observe that the results obtained
with help of HPSTM and SDM are in a full agreement with
the exact solution. It is to be noted that only the seventh
order term of the HPSTM and SDM was used in evaluating
the approximate solutions for Figures 1 and 2. It is evident
that the efficiency of the present method can be dramatically
enhanced by computing further terms of 𝑈(𝑥, 𝑦, 𝑡) when the
HPSTM and SDM are used.

Example 2. Next, we consider the time-fractional biological
population model in the following form:

𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑦, 𝑡) = 𝐷

2

𝑥
𝑈
2
+ 𝐷
2

𝑦
𝑈
2
+ 𝑈, 0 < 𝛼 ≤ 1, (45)

subject to initial condition

𝑈 (𝑥, 𝑦, 0) = √sin𝑥 sinh𝑦. (46)

By applying the HPSTM, we have

∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦

+ 𝑝𝑆
−1
(𝑢
𝛼
𝑆 [

∞

∑

𝑛 = 0

𝑝
𝑛
𝐴
𝑛

+

∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑦, 𝑡)]) .

(47)

Equating the like powers of 𝑝, (47) yields

𝑝
0
: 𝑈
0
(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦,

𝑝
1
: 𝑈
1
(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦 𝑡

𝛼

Γ (𝛼 + 1)
,

𝑝
2
: 𝑈
2
(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦 𝑡

2𝛼

Γ (2𝛼 + 1)
,

𝑝
3
: 𝑈
3
(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦 𝑡

3𝛼

Γ (3𝛼 + 1)
,

(48)

and so on.
Taking use of (48), the series solution 𝑈(𝑥, 𝑦, 𝑡) is pre-

sented as

𝑈 (𝑥, 𝑦, 𝑡) = lim
𝑝→1

∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑦, 𝑡)

= √sin𝑥 sinh𝑦[1 + 𝑡
𝛼

Γ (𝛼 + 1)
+

𝑡
2𝛼

Γ (2𝛼 + 1)

+
𝑡
3𝛼

Γ (3𝛼 + 1)
+ ⋅ ⋅ ⋅ ] .

(49)
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Figure 1:The behavior of the𝑈(𝑥, 𝑦, 𝑡) with respect to 𝑥 and 𝑡 is obtained with 𝑦 = 1 and ℎ = 1, when (a) 𝛼 = 0.5; (b) 𝛼 = 0.75; (c) 𝛼 = 1; (d)
exact solution.

Putting 𝛼 = 1 in (49), we reproduce the solution of the
problem as follows:

𝑢 (𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦[1 + 𝑡
1!
+
𝑡
2

2!
+
𝑡
3

3!
+ ⋅ ⋅ ⋅ ] , (50)

which converge very rapidly to the exact solution𝑈(𝑥, 𝑦, 𝑡) =
√sin𝑥 sinh𝑦𝑒𝑡.

According to SDM, we have
∞

∑

𝑛 = 0

𝑈
𝑛
(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦

+ 𝑆
−1
(𝑢
𝛼
𝑆 [

∞

∑

𝑛 = 0

𝐴
𝑛
+

∞

∑

𝑛 = 0

𝑈
𝑛
(𝑥, 𝑦, 𝑡)]) .

(51)

The recursive relation is given below:

𝑈
0
(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦,

𝑈
1
(𝑥, 𝑦, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐴
0
+ 𝑈
0
]] ,

𝑈
𝑛+1
(𝑥, 𝑦, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐴
𝑛
+ 𝑈
𝑛
]] .

(52)

The other components of the solution can be easily found by
using above recursive relation:

𝑈
0
(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦,

𝑈
1
(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦 𝑡

𝛼

Γ (𝛼 + 1)
,
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Figure 2: Plots of 𝑈(𝑥, 𝑦, 𝑡) versus 𝑡 at ℎ = 1, 𝑥 = 1, 𝑦 = 1, and
𝛼 = 1.
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Figure 3: Plots of 𝑈(𝑥, 𝑦, 𝑡) versus 𝑡 at ℎ = 1, 𝑥 = 1, and 𝑦 = 1 for
different values of 𝛼.

𝑈
2
(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦 𝑡

2𝛼

Γ (2𝛼 + 1)
,

𝑈
3
(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦 𝑡

3𝛼

Γ (3𝛼 + 1)
,

(53)

and so on.

Thus, the decomposition series solutions is given by

𝑈 (𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦[1 + 𝑡
𝛼

Γ (𝛼 + 1)
+

𝑡
2𝛼

Γ (2𝛼 + 1)

+
𝑡
3𝛼

Γ (3𝛼 + 1)
+ ⋅ ⋅ ⋅ ] ,

(54)

which is the same solution as obtained by employing HPSTM
and setting 𝛼 = 1; it converses to the exact solution
𝑈(𝑥, 𝑦, 𝑡) = √sin𝑥 sinh𝑦𝑒𝑡.

The numerical results for the time-fractional biological
population model (45) obtained with the help of HPSTM,
SDM, and the exact solution for various values of 𝑡, 𝑥, and 𝛼
with𝑦 = 1 are described through Figures 4(a)–4(d) and those
for various values of 𝑡 at 𝑥 = 1, 𝑦 = 1, and 𝛼 = 1 are given in
Figure 5 and those for different values of 𝑡 and 𝛼 at 𝑥 = 1 and
𝑦 = 1 are depicted in Figure 6. It is observed from Figure 4
that 𝑈(𝑥, 𝑦, 𝑡) increases with the increase in both 𝑥 and 𝑡 for
𝛼 = 0.5, 0.75, and 1 with 𝑦 = 1. It is to be observed from
Figure 6 that as the value of 𝛼 decrease, the value of𝑈(𝑥, 𝑦, 𝑡)
increases. It can also be seen from Figure 4 that the solution
obtained by using the present method is nearly identical with
the exact solution. From Figure 5, we can easily observe that
the results obtained with help of HPSTM and SDM are in a
full agreement with the exact solution. It is to be noted that
only the seventh order term of the HPSTM and SDM was
used in evaluating the approximate solutions for Figures 4
and 5.

Example 3. Finally, we consider the following time-fractional
biological population model:

𝐷
𝛼

𝑡
𝑈 = 𝐷

2

𝑥
𝑈
2
+ 𝐷
2

𝑦
𝑈
2
− 𝑈 (𝑥, 𝑦, 𝑡) (1 +

8

9
𝑈 (𝑥, 𝑦, 𝑡)) ,

0 < 𝛼 ≤ 1,

(55)

subject to the initial condition

𝑈 (𝑥, 𝑦, 0) = 𝑒
(𝑥+𝑦)/3

. (56)

By applying the HPSTM, we have

∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑦, 𝑡) = 𝑒

(𝑥+𝑦)/3

+ 𝑝𝑆
−1
(𝑢
𝛼
𝑆 [

∞

∑

𝑛 = 0

𝑝
𝑛
𝐴
𝑛

−

∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑦, 𝑡)]) .

(57)
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Figure 4: The behavior of the 𝑈(𝑥, 𝑦, 𝑡) with respect to 𝑥 and 𝑡 with 𝑦 = 1 is obtained, when (a) 𝛼 = 0.5; (b) 𝛼 = 0.75; (c) 𝛼 = 1; (d) exact
solution.

Equating the terms with identical powers of 𝑝, we have

𝑝
0
: 𝑈
0
(𝑥, 𝑦, 𝑡) = 𝑒

(𝑥+𝑦)/3
,

𝑝
1
: 𝑈
1
(𝑥, 𝑦, 𝑡) = − 𝑒

(𝑥+𝑦)/3 𝑡
𝛼

Γ (𝛼 + 1)
,

𝑝
2
: 𝑈
2
(𝑥, 𝑦, 𝑡) = 𝑒

(𝑥+𝑦)/3 𝑡
2𝛼

Γ (2𝛼 + 1)
,

𝑝
3
: 𝑢
3
(𝑥, 𝑦, 𝑡) = − 𝑒

(𝑥+𝑦)/3 𝑡
3𝛼

Γ (3𝛼 + 1)
,

(58)

and so on.

Using (58), the series solution 𝑈(𝑥, 𝑦, 𝑡) is

𝑈 (𝑥, 𝑦, 𝑡) = lim
𝑝→1

∞

∑

𝑛 = 0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑦, 𝑡)

= 𝑒
(𝑥+𝑦)/3

[1 −
𝑡
𝛼

Γ (𝛼 + 1)
+

𝑡
2𝛼

Γ (2𝛼 + 1)

−
𝑡
3𝛼

Γ (3𝛼 + 1)
+ ⋅ ⋅ ⋅ ] .

(59)

Taking 𝛼 = 1 in (59), we reproduce the solution of the
problem as follows:
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Figure 5: Plots of 𝑈(𝑥, 𝑦, 𝑡) versus 𝑡 at 𝑥 = 1, 𝑦 = 1, and 𝛼 = 1.
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Figure 6: Plots of𝑈(𝑥, 𝑦, 𝑡) versus 𝑡 at 𝑥 = 1 and 𝑦 = 1 for different
values of 𝛼.

𝑈 (𝑥, 𝑦, 𝑡) = 𝑒
(𝑥+𝑦)/3

[1 −
𝑡

1!
+
𝑡
2

2!
−
𝑡
3

3!
+ ⋅ ⋅ ⋅ ] , (60)

which converge very rapidly to the exact solution𝑈(𝑥, 𝑦, 𝑡) =
𝑒
(1/3)(𝑥+𝑦)−𝑡.

According to SDM, we have
∞

∑

𝑛 = 0

𝑈
𝑛
(𝑥, 𝑦, 𝑡) = 𝑒

(𝑥+𝑦)/3

+ 𝑆
−1
(𝑢
𝛼
𝑆 [

∞

∑

𝑛 = 0

𝐴
𝑛
−

∞

∑

𝑛 = 0

𝑈
𝑛
(𝑥, 𝑦, 𝑡)]) .

(61)

The recursive relation is given below:

𝑈
0
(𝑥, 𝑦, 𝑡) = 𝑒

(𝑥+𝑦)/3
,

𝑈
1
(𝑥, 𝑦, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐴
0
− 𝑈
0
]] ,

𝑈
𝑛+1
(𝑥, 𝑦, 𝑡) = 𝑆

−1
[𝑢
𝛼
𝑆 [𝐴
𝑛
− 𝑈
𝑛
]] .

(62)

The other components of the solution can be easily found by
using above recursive relation:

𝑈
0
(𝑥, 𝑦, 𝑡) = 𝑒

(𝑥+𝑦)/3
,

𝑈
1
(𝑥, 𝑦, 𝑡) = − 𝑒

(𝑥+𝑦)/3 𝑡
𝛼

Γ (𝛼 + 1)
,

𝑈
2
(𝑥, 𝑦, 𝑡) = 𝑒

(𝑥+𝑦)/3 𝑡
2𝛼

Γ (2𝛼 + 1)
,

𝑈
3
(𝑥, 𝑦, 𝑡) = − 𝑒

(𝑥+𝑦)/3 𝑡
3𝛼

Γ (3𝛼 + 1)
,

(63)

and so on.
So, the decomposition series solutions is given by

𝑈 (𝑥, 𝑦, 𝑡) = 𝑒
(𝑥+𝑦)/3

[1 −
𝑡
𝛼

Γ (𝛼 + 1)
+

𝑡
2𝛼

Γ (2𝛼 + 1)

−
𝑡
3𝛼

Γ (3𝛼 + 1)
+ ⋅ ⋅ ⋅ ] ,

(64)

which is the same solution as obtained by the application of
HPSTM and setting 𝛼 = 1; it converges to the exact solution
𝑈(𝑥, 𝑦, 𝑡) = 𝑒

(1/3)(𝑥+𝑦)−𝑡.

The numerical results for the time-fractional biological
population model (55) obtained with the help of HPSTM,
SDM, and the exact solution for various values of 𝑡, 𝑥, and
𝛼 with 𝑦 = 1 are described through Figures 7(a)–7(d) and
those for various values of 𝑡 at 𝑥 = 1, 𝑦 = 1, and 𝛼 = 1 are
depicted in Figure 8 and those for different values of 𝑡 and 𝛼
at 𝑥 = 1 and 𝑦 = 1 are presented in Figure 9. It is observed
from Figure 7 that 𝑈(𝑥, 𝑦, 𝑡) increases with the increase in 𝑥
and decreases with increase in 𝑡 for 𝛼 = 0.5, 0.75, and 1 with
𝑦 = 1. It is to be observed from Figure 9 that as the value
of 𝛼 increase, the value of 𝑈(𝑥, 𝑦, 𝑡) increases, but afterward
its nature is opposite. It can also be seen from Figure 7 that
the solution obtained by using the present technique is nearly
identical with the exact solution. From Figure 8, we can easily
observe that the results obtained with help of HPSTM and
SDM are in an excellent agreement with the exact solution. It
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Figure 7: The behavior of the 𝑈(𝑥, 𝑦, 𝑡) with respect to 𝑥 and 𝑡 with 𝑦 = 1 is obtained, when (a) 𝛼 = 0.5; (b) 𝛼 = 0.75; (c) 𝛼 = 1; (d) exact
solution.

is to be noted that only the seventh order term of the HPSTM
and SDM was used in evaluating the approximate solutions
for Figures 7 and 8.

6. Conclusions

In this paper, theHPSTMandSDMare successfully employed
to solve the time-fractional biological population models.
The proposed methods provide the solutions in terms of
convergent series with easily computable components in
a direct way without using linearization, perturbation, or
restrictive assumptions. The numerical results obtained with

the proposed techniques are in an excellent agreement with
the exact solution. It is worth mentioning that both methods
are capable of reducing the volume of the computational
work as compared to the classical methods while still main-
taining the high accuracy of the numerical result; the size
reduction amounts to an improvement of the performance
of the approach for solving the time-fractional biological
populationmodels. Hence, we conclude that the HPSTM and
SDM are very powerful and efficient in finding analytical
as well as numerical solutions for wide classes of nonlinear
fractional partial differential equations arising in science
engineering and finance.
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Figure 8: Plots of 𝑈(𝑥, 𝑦, 𝑡) versus 𝑡 at 𝑥 = 1, 𝑦 = 1, and 𝛼 = 1.
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Figure 9: Plots of 𝑈(𝑥, 𝑦, 𝑡) versus 𝑡 at 𝑥 = 1 and 𝑦 = 1 for different
values of 𝛼.
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